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ABSTRACT

We give a self-contained modern linear stability analysis of a system of n equal-mass bodies in circular orbit about
a single more massive body. Starting with the mathematical description of the dynamics of the system, we form the
linear approximation, compute all of the eigenvalues of the linear stability matrix, and finally derive inequalities that
guarantee that none of these eigenvalues have a positive real part. In the endwe rederive the result thatMaxwell found
for large n in his seminal paper on the nature and stability of Saturn’s rings, which was published 150 years ago. In
addition, we identify the exact matrix that defines the linearized system even when n is not large. This matrix is then
investigated numerically (by computer) to find stability inequalities. Furthermore, using properties of circulant ma-
trices, the eigenvalues of the large 4n ; 4n matrix are computed by solving n quartic equations, which further facil-
itates the investigation of stability. Finally, we implement an n-body simulator, and we verify that the threshold mass
ratios that we derive mathematically or numerically do indeed identify the threshold between stability and instability.
Throughout the paper we consider only the planar n-body problem so that the analysis can be carried out purely in
complex notation, which makes the equations and derivations more compact, more elegant, and therefore, we hope,
more transparent. The result is a fresh analysis that shows that these systems are always unstable for 2 � n � 6, and
for n > 6 they are stable provided that the central mass is massive enough. We give an explicit formula for this mass-
ratio threshold.
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1. INTRODUCTION

One hundred and fifty years ago,Maxwell (1859) was awarded
the prestigious Adams Prize for a seminal paper on the stability of
Saturn’s rings. At that time, neither the structure nor the compo-
sition of the rings was known. Hence, Maxwell considered vari-
ous scenarios such as the possibility that the rings were solid or
liquid annuli or a myriad of small boulders. As a key part of this
last possibility, Maxwell studied the case of n equal-mass bodies
orbiting Saturn at a common radius and uniformly distributed about
a circle of this radius. He concluded that, for large n, the ring ought
to be stable provided that the following inequality is satisfied:

mass(rings) � 2:298 ;mass(Saturn)=n2:

The mathematical analysis that leads to this result has been scru-
tinized, validated, and generalized by a number of mathemati-
cians over the years.

We summarize briefly some of the key historical developments.
Tisserand (1889) derived the same stability criterion using an anal-
ysis in which he assumed that the ring has no effect on Saturn and
that the highest vibration mode of the system controls stability.
More recently,Willerding (1986) used the theory of densitywaves
to show that Maxwell’s results are correct in the limit as n goes to
infinity. Pendse (1935) reformulated the stability problem so that it
took into account the effect of the rings on the central body. He
proved that for n � 6 the system is unconditionally unstable. In-
spired by this work, Salo & Yoder (1988) studied coorbital for-
mations of n satellites for small values of n in which the satellites
are not distributed uniformly around the central body. They showed
that there are some stable asymmetric formations (such as the well-
known case of a pair of ring bodies in L4/L5 position relative to

each other: i.e., one leading the other by 60
�
). Scheeres & Vinh

(1991) extended the analysis of Pendse to find the stability crite-
rion as a function of the number of satellites when n is small. The
resulting threshold depends on n, but for n � 7 it deviates only a
small amount from the asymptotically derived value. More re-
cently, Moeckel (1994) studied the linear stability of n-body sys-
tems for which the motion is given as a simple rotation about the
center of mass and under the condition that all masses except one
become vanishingly small. This latter condition greatly simpli-
fies the analysis. Under these assumptions, Moeckel shows, using
the invariant subspace of the linearized Hamiltonian, that sym-
metric ring systems are stable if and only if n � 7. For n � 6 he
gives some examples of the stable configurations discussed in Salo
& Yoder (1988) in which the ring bodies are not uniformly dis-
tributed. Finally, Roberts (2000), expanding onMoeckel’s work,
obtained stability criteria that match those given by Scheeres &
Vinh (1991).
In this paper we give a self-contained modern linear stability

analysis of a system of equal-mass bodies in circular orbit about
a single more massive body. We start with the mathematical de-
scription of the dynamics of the system.We then form the linear
approximation, compute all of the eigenvalues of the matrix de-
fining the linear approximation, and finally derive inequalities
that guarantee that none of these eigenvalues have a positive real
part. In the end we get exactly the same result that Maxwell found
for large n. But, in addition, we identify the exact matrix that de-
fines the linearized system even when n is not large. This matrix
can then be investigated numerically to find stability inequalities
even in cases in which n is not large. Furthermore, using prop-
erties of circulant matrices, the eigenvalues of the large 4n ; 4n
matrix can be computed by solving n quartic equations, which
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further facilitates the investigation. Finally,we implement an n-body
simulator based on a leapfrog integrator (see Saha & Tremaine
1994; Hut et al. 1995), and we verify that the threshold mass
ratios that we derive mathematically or numerically do indeed
identify the threshold between stability and instability.

Throughout the paper we consider only the planar n-body
problem. That is, we ignore any instabilities that might arise due
to out-of-plane perturbations. Maxwell claimed, and others have
confirmed, that these out-of-plane perturbations are less desta-
bilizing than in-plane ones, and hence our analysis, while not fully
general, does get to the right answer. Our main reason for wishing
to restrict to the planar case is that we can then work in the com-
plex plane and our entire analysis can be carried out purely in com-
plex notation, which makes the equations and derivations more
compact, more elegant, and therefore, we hope, more transparent.

Finally, we should point out that the relevance of this work to
observed planetary rings is perhaps marginal, since real ring
systems appear to be highly collisional and the energy dissipa-
tion associated with such collisions affects their stability in a fun-
damental way (see, e.g., Salo 1995).

2. EQUALLY SPACED, EQUAL-MASS BODIES
IN A CIRCULAR RING ABOUT A MASSIVE BODY

Consider the multibody problem consisting of one large central
body, for instance, Saturn, having mass M and n small bodies,
such as boulders, each of massm orbiting the large body in circu-
lar orbits uniformly spaced in a ring of radius r. Indices 0 to n� 1
are used to denote the ring masses, and index n is used for Saturn.
Throughout the paper we assume that n � 2. For the case n ¼ 1,
Lagrange proved that the system is stable for all mass ratiosm/M .

The purpose of this section is to show that such a ring exists
as a solution to Newton’s law of gravitation. In particular, we de-
rive the relationship between the angular velocity ! of the ring
particles and their radius r from the central mass. We assume all
bodies lie in a plane and therefore that complex variable notation
is convenient. So, with i ¼ �1ð Þ1=2 and z ¼ xþ iy, we can write
the equilibrium solution for j ¼ 0, 1, : : : , n� 1 as

zj ¼ rei(!tþ2�j=n); ð1Þ

zn ¼ 0: ð2Þ

By symmetry (and exploiting our assumption that n � 2), force
is balanced on Saturn itself. Now consider the ring bodies. Dif-
ferentiating equation (1), we see that

z̈j ¼ �!2zj: ð3Þ

From Newton’s law of gravity we have that

z̈j ¼ �GM
zj � zn

jzj � znj3
þ
X
k 6¼j;n

Gm
zk � zj

jzk � zjj3
: ð4Þ

Equations (3) and (4) allow us to determine !, which is our first
order of business. By symmetry it suffices to consider j ¼ 0. It is
easy to check that

zk � z0 ¼ rei!te�ik=n2i sin (�k=n); ð5Þ

and hence that

jzk � z0j ¼ 2r sin (�k=n): ð6Þ

Substituting equations (5) and (6) into equation (4) and setting
this equal to equation (3), we see that

�!2 ¼� GM

r3
þ
Xn�1

k¼1

Gm

4r3
ie�ik=n

sin2(�k=n)
ð7Þ

¼ � GM

r3
� Gm

4r3

Xn�1

k¼1

1

sin (�k=n)
þ i

Gm

4r3

Xn�1

k¼1

cos (�k=n)

sin2(�k=n)
:

ð8Þ

It is easy to check that the summation in the imaginary part on
the right-hand side vanishes. Hence,

!2 ¼ GM

r3
þ Gm

r3
In; ð9Þ

where

In ¼
1

4

Xn�1

k¼1

1

sin (�k=n)
: ð10Þ

With this choice of !, the trajectories given by equations (1) and
(2) satisfy Newton’s law of gravitation.

3. FIRST-ORDER STABILITY

In order to carry out a stability analysis, we need to counter-
rotate the system so that all bodies remain at rest. We then per-
turb the system slightly and analyze the result.

A counterrotated system would be given by

e�i!tzj(t) ¼ re2�ij=n ¼ zj(0):

In such a rotating frame of reference, each body remains fixed at
its initial point. It turns out to be better to rotate the different bodies
different amounts so that every ring body is repositioned to lie on
the x-axis. In other words, for j ¼ 0, : : : , n� 1, n we define

wj ¼ uj þ ivj ¼ e�i(!tþ2�j=n)zj: ð11Þ

The advantage of repositioning every ring body to the positive
real axis is that perturbations in the real part for any ring body
represent radial perturbations, whereas perturbations in the imag-
inary part represent azimuthal perturbations. A simple counter-
rotation does not provide such a clear distinction between the
two types of perturbations (and the associated stability matrix
fails to have the circulant property that is crucial to all later
analysis).

Differentiating equation (11) twice, we get

ẅj ¼ !2wj � 2i!ẇj þ e�i(!tþ2�j=n)z̈j: ð12Þ

From Newton’s law of gravity, we see that

ẅj ¼ !2wj � 2i!ẇj þ
X
k 6¼j

Gmk

�k; j

j�k; jj3
; ð13Þ

where

mk ¼
m; k ¼ 0; 1; : : : ; n� 1;

M ; k ¼ n;

�
ð14Þ

�k; j ¼ ei�k�jwk � wj; ð15Þ

�k ¼ 2�k=n: ð16Þ
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Let �wj(t) denote variations about the fixed point given by

wj �
r; j ¼ 0; 1; : : : ; n� 1;

0; j ¼ n:

�
ð17Þ

We compute a linear approximation to the differential equation
describing the evolution of such a perturbation. Applying the quo-
tient, chain, and product rules as needed, we get

�ẅj ¼ !2 �wj � 2i! �ẇj

þ
X
k 6¼j

Gmk

�k; j
�� ��3��k; j � �k; j 3=2ð Þ �k; j

�� �� �k; j ��̄k; j þ �̄k; j ��k; j
� �

�k; j
�� ��6

¼ !2 �wj � 2i! �ẇj �
1

2

X
k 6¼j

Gmk

�k; j
�� ��2��k; j þ 3�2k; j ��̄k; j

�k; j
�� ��5 ;

ð18Þ

where

��k; j ¼ ei�k�j �wk � �wj; ��̄k; j ¼ e�i�k�j �w̄k � �w̄j:

The next step is to use equation (15) to re-express the �k; j
values in terms of the wk and wj values, and then to substitute in
the particular solution given by equation (17). Consider the
case in which j < n. In this case we have

�k; j ¼
r ei�k�j � 1
� �

; k < n;

�r; k ¼ n;

(

and therefore,

�k; j
�� �� ¼ 2r sin �k�j

�� ��=2� �
; k < n;

r; k ¼ n:

(

Substituting these into equation (18) and simplifying, we get

�ẅj ¼ !2 �wj � 2i! �ẇj

� GM

2r3
e�i�j �wn þ 3ei�j �w̄n

� �
þ GM

2r3
�wj þ 3�w̄j

� �
� Gm

2r3
1

8

X
k 6¼j;n

ei�k�j �wk � �wj � 3ei�k�j e�i�k�j �w̄k � �w̄j

� �
sin3 �k�j

�� ��=2� � :

ð19Þ

4. CHOICE OF COORDINATE SYSTEM

Without loss of generality, we can choose our coordinate sys-
tem so that the center of mass remains fixed at the origin. Hav-
ing done that, the perturbations �wn and �w̄n can be computed
explicitly in terms of the other perturbations. Indeed, conserva-
tion of momentum implies that

m
X
k 6¼n

�zk þ M �zn ¼ 0:

Hence,

�zn ¼ � m

M

X
k 6¼n

�zk :

From definition (11) of the wk values in terms of the zk values,
it then follows that

e�i�j �wn ¼ � m

M

X
k 6¼n

ei�k�j �wk :

Making this substitution for e�i�j �wn and an analogous substi-
tution for e i�j �w̄n in equation (19), we see that

�ẅj ¼ !2 �wj � 2i! �ẇj

þ Gm

2r3

X
k 6¼n

e i�k�j �wk þ 3e�i�k�j �w̄k

� �
þ GM

2r3
�wj þ 3�w̄j

� �

� Gm

2r3
1

8

X
k 6¼j;n

ei�k�j �wk � �wj � 3ei�k�j e�i�k�j �w̄k � �w̄j

� �
sin3 �k�j

�� ��=2� � :

ð20Þ

5. CIRCULANT MATRIX

Switching to matrix notation, letWj denote a shorthand for the
column vector wj w̄j

� �0
. In this notation we see that equation (20)

together with its conjugates can be written as

d

dt

�W0

�W1

..

.

�Wn�1

�Ẇ0

�Ẇ1

..

.

�Ẇn�1

2
6666666666666664

3
7777777777777775

�

I

I

. .
.

I

D N1 : : : Nn�1 �

Nn�1 D : : : Nn�2 �

..

. ..
. ..

. . .
.

N1 N2 : : : D �

2
6666666666666664

3
7777777777777775

�W0

�W1

..

.

�Wn�1

�Ẇ0

�Ẇ1

..

.

�Ẇn�1

2
6666666666666664

3
7777777777777775

;

ð21Þ

where the D, �, and Nk notations are 2 ; 2 complex matrices
given by

D ¼ 3

2
!2

1 1

1 1

� �
þ Gm

2r3
1� In þ Jn=2 3� 3Jn=2

3� 3Jn=2 1� In þ Jn=2

� �
;

Nk ¼
Gm

2r3
ei�k 1� Jk;n=2
� �

3e�i�k þ 3Jk;n=2

3ei�k þ 3Jk;n=2 e�i�k 1� Jk;n=2
� �

" #
;

� ¼ 2i!
�1 0

0 1

� �
;

and where

Ik;n ¼
1

4 sin �jkj=nð Þ ;

Jk;n ¼
1

4 sin3 �jkj=nð Þ
;

and

In ¼
Xn�1

k¼1

Ik;n �
1

2�
n
X(n�1)=2

k¼1

1

k
� 1

2�
n log

n

2
; ð22Þ

Jn ¼
Xn�1

k¼1

Jk;n �
1

2�3
n3
X1
k¼1

1

k3
¼ n3

2�3
�(3) ¼ 0:01938n3: ð23Þ
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Here the ‘‘approximate’’ symbol is used to indicate asymptotic
agreement. That is, an � bn means that an /bn ! 1 as n ! 1,
and �(3) denotes the value of the Riemann zeta function at 3.
This constant is known as ‘‘Apéry’s constant’’ (see, e.g., Arfken
1985).

Finally, note that in deriving equation (21) from equation (20)
we have made repeated use of the identity

Xn�1

k¼1

ei�k

sin3 �kj j=2
¼ 4Jn � 8In: ð24Þ

Let A denote the matrix in equation (21). We need to find the
eigenvalues of A and derive the necessary and sufficient condi-
tions under which none of them have a positive real part. At this
pointwe could resort to numerical computation to bracket a thresh-
old for stability by doing a binary search to find the largest value of
m/M for which none of the eigenvalues have a positive real part.
We did such a search for some values of n. The results are shown
in Table 1.

The eigenvalues are complex numbers for which there are non-
trivial solutions to

I

I

. .
.

I

D N1 : : : Nn�1 �

Nn�1 D : : : Nn�2 �

..

. ..
. ..

. . .
.

N1 N2 : : : D �

2
6666666666666664

3
7777777777777775

�W0

�W1

..

.

�Wn�1

�Ẇ0

�Ẇ1

..

.

�Ẇn�1

2
6666666666666664

3
7777777777777775

¼ k

�W0

�W1

..

.

�Wn�1

�Ẇ0

�Ẇ1

..

.

�Ẇn�1

2
6666666666666664

3
7777777777777775

:

ð25Þ

The first n equations can be used to eliminate the ‘‘derivative’’
variables from the second set. That is,

�Ẇ0

�Ẇ1

..

.

�Ẇn�1

2
66664

3
77775 ¼ k

�W0

�W1

..

.

�Wn�1

2
66664

3
77775;

and therefore,

D N1 : : : Nn�1

Nn�1 D : : : Nn�2

..

. ..
. ..

.

N1 N2 : : : D

2
66664

3
77775

�W0

�W1

..

.

�Wn�1

2
66664

3
77775

þ k

�

�

. .
.

�

2
66664

3
77775

�W0

�W1

..

.

�Wn�1

2
66664

3
77775 ¼ k2

�W0

�W1

..

.

�Wn�1

2
66664

3
77775: ð26Þ

The matrix on the left-hand side is called a ‘‘block circulant
matrix.’’ Much is known about such matrices. In particular, it is
easy to find the eigenvectors of such matrices. For general prop-
erties of block circulant matrices, see Tee (2005).

Let � denote an nth root of unity (i.e., � ¼ e2�ij
=n for some

j ¼ 0, 1, : : :, n� 1), and let � be an arbitrary complex 2-vector.
We look for solutions of the form

�W0

�W1

..

.

�Wn�1

2
66664

3
77775 ¼

�

��

..

.

�n�1�

2
66664

3
77775:

TABLE 1

Estimates of the Stability Threshold

Threshold Value for �

n Numerical Eq. (43) (Even-n only) Simulator Roberts Results

2............................. 0.000 � [0.0, 0.007] . . .

6............................. 0.000 � [0.0, 0.025] . . .

7............................. 2.452 . . . [2.45, 2.46] . . .
8............................. 2.412 2.4121 [2.41, 2.42] 2.412

10........................... 2.375 2.3753 [2.37, 2.38] 2.375

12........................... 2.354 2.3543 [2.35, 2.36] 2.354

14........................... 2.341 2.3411 [2.34, 2.35] 2.341

20........................... 2.321 2.3213 [2.32, 2.33] 2.321

36........................... 2.306 2.3066 [2.30, 2.31] . . .

50........................... 2.303 2.3031 [2.30, 2.31] 2.303

100......................... 2.300 2.2999 [2.30, 2.31] 2.300

101......................... 2.300 . . . [2.30, 2.31] 2.300

500......................... 2.299 2.2987 [. . . , . . .] 2.299

Notes.—Stability thresholds are estimated as � in an inequality of the type m � �M /n3. The second column
contains numerically derived values obtained by a brute-force computation of the eigenvalues together with a
simple binary search to find the first point at which an eigenvalue takes on a positive real part. The third column
gives thresholds computed using eq. (43). The column of simulator values corresponds to results from running a
leapfrog integrator and noting the smallest value of � for which instability is clearly demonstrated. This is the
larger of the pair of values shown. The smaller value is a nearby value for which the simulator was run 10 times
longer with no overt indication of instability. Finally, the column of Roberts results shows values from Table 3 in
Roberts (2000). Cells marked with an asterisk are cells for which an entry is not relevant, and cells marked with an
ellipsis are cells for which an entry is unavailable.
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Substituting such a guess into equation (26), we see that each of
the n rows reduces to one and the same thing:

Dþ �N1 þ : : :þ �n�1Nn�1

� �
� þ k�� ¼ k2�:

There are nontrivial solutions to this 2 ; 2 system if and only if

det Dþ �N1 þ : : :þ �n�1Nn�1 þ k�� k2I
� �

¼ 0:

For each root of unity �, there are four values of k that solve this
equation (counting multiplicities). That makes a total of 4n eigen-
values and therefore provides all eigenvalues for the full system in
equation (25).

6. EXPLICIT EXPRESSION FOR
Pn�1

k¼1 �
kNk

In order to compute the eigenvalues, it is essential that we
compute

Pn�1
k¼1 �

kNk as explicitly as possible. To this end,we note
the following reduction and new definition:

Xn�1

k¼1

� kJk;n ¼
1

4

Xn�1

k¼1

e2�ijk=n

sin3 �k=2ð Þ
¼ 1

4

Xn�1

k¼1

cos j�kð Þ
sin3 �k=2ð Þ

� J̃j;n:

ð27Þ

Similarly,

Xn�1

k¼1

�ke i�k Jk;n ¼ J̃jþ1;n; ð28Þ

Xn�1

k¼1

� ke�i�k Jk;n ¼ J̃j�1;n: ð29Þ

We also compute

Xn�1

k¼1

� ke i�k ¼
Xn�1

k¼1

eij�k e i�k ¼
Xn�1

k¼1

ei ( jþ1)�k

¼
n� 1; j ¼ n� 1;

�1; otherwise:

�
ð30Þ

Xn�1

k¼1

� ke�i�k ¼
n� 1; j ¼ 1;

�1; otherwise:

�
ð31Þ

Substituting the definition of Nk into
Pn�1

k¼1 �
kNk and making

use of equations (27)–(31), we get

Xn�1

k¼1

� kNk

¼ Gm

2r3

�1þ n�j¼n�1 �
1

2
J̃jþ1;n �3þ 3n�j¼1 þ

3

2
J̃j;n

�3þ 3n�j¼n�1 þ
3

2
J̃j;n �1þ n�j¼1 �

1

2
J̃j�1;n

2
64

3
75;
ð32Þ

where �j¼k denotes the Kronecker delta (i.e., 1 when j ¼ k and
0 otherwise).

7. SOLVING det Dþ
Pn�1

k¼1 �
kNk þ k�� k2I

	 

¼ 0

Assembling the results from the previous sections, we see
that

Dþ
Xn�1

k¼1

�kNk þ k�� k2I

¼

3

2
!2 þ 1

2
�2

jþ1 � 	2 � 2i!k� k2
3

2
!2 � 3

2
�2

j

3

2
!2 � 3

2
�2

j

3

2
!2 þ 1

2
�2

j�1 � 	2 þ 2i!k� k2

2
64

3
75

þ Gm

2r3
n�j¼n�1 3n�j¼1

3n�j¼n�1 n�j¼1

� �
; ð33Þ

where �2
j and 	2 are shorthand for the expressions

�2
j ¼

Gm

2r3
Jn � J̃j;n
� �

� 0;

	2 ¼ Gm

2r3
In � 0;

and, as a reminder, In and Jn are defined by equations (22) and
(23), respectively, whereas J̃j;n is defined by equation (27).
It turns out in our subsequent analysis that the root of unity

given by j ¼ n/2 is the most critical one for stability, at least for
n � 7. For n ¼ 2, : : : , 6 the instability stems from the eigen-
vectors associated with j¼1 and j ¼ n�1. We analyze the key
cases. But first we note that the critical j ¼ n/2 case corresponds
to perturbations in which every other body is perturbed in the
opposite direction. And,more importantly, it does not matter what
the direction of the perturbation is. That is, if body 0 is advanced
azimuthally, then all of the even-numbered bodies are advanced
azimuthally, and all of the odd-numbered bodies are retarded by
the same amount. Similarly, if body 0 is pushed outward radially,
then all of the even-numbered bodies are also pushed outward,
whereas the odd-numbered bodies are pulled inward. Azimuthal
and radial perturbations contribute equally to instability.

7.1. The Case inWhich n Is Arbitrary and j Is neither 1 nor n� 1

Assuming that j is neither 1 nor n� 1, we see that

det Dþ
Xn�1

k¼1

� kNk þ k�� k2I

 !

¼ 3

2
!2 þ 1

2
�2

jþ1 � 	2 � 2i!k� k2
� �

;
3

2
!2 þ 1

2
�2

j�1 � 	2 þ 2i!k� k2
� �

� 3

2
!2 � 3

2
�2

j

� �2

: ð34Þ

Expanding out the products on the right-hand side in equation (34),
we get that

det Dþ
Xn�1

k¼1

� kNk þ k�� k2I

 !
¼ k4 þ Ajk

2 þ iBjkþ Cj ¼ 0;

ð35Þ

where

Aj ¼ !2 � 1

2
�2

j�1 þ �2
jþ1

	 

þ 2	2; ð36Þ
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Bj ¼ �! �2
j�1 � �2

jþ1

	 

; ð37Þ

Cj ¼3!2 1

4
�2

j�1 þ �2
jþ1

	 

þ 3

2
�2

j � 	2

� �

þ 1

4
�2

j�1 þ �2
jþ1

	 

� 	2

� �2

� 1

16
�2

j�1 � �2
jþ1

	 
2
� 9

4
�4

j : ð38Þ

7.1.1. The Subcase in Which n Is Even and j ¼ n/2

In the subcase in which n is even and j ¼ n/2, it is easy to see
by symmetry that �n/2þ1 ¼ �n/2�1. To emphasize the equality,
we denote this common value by �n/2�1. Equations (36)–(38)
simplify significantly. The result is

det Dþ
Xn�1

k¼1

� kNk þ k�� k2I

 !

¼ k4 þ !2 � �2
n=2�1 þ 2	2

	 

k2

þ 3!2 1

2
�n=2�1 þ

3

2
�2

n=2 � 	2

� �

þ 1

2
�2

n=2�1 � 	2

� �2

� 9

4
�4

n=2: ð39Þ

For a moment let us write this biquadratic polynomial (in k) in
a simple generic form and equate it to 0:

k4 þ Ak2 þ C ¼ 0:

The quadratic formula then tells us that

k2 ¼ �A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4C

p

2
:

To get the eigenvalues we need to take square roots one more
time. The only way for the resulting eigenvalues not to have a
positive real part is for k2 to be real and nonpositive. Necessary
and sufficient conditions for this are that

A � 0; ð40Þ
C � 0; ð41Þ

A2 � 4C � 0: ð42Þ

It turns out that the third condition implies the first two (we leave
verification of this fact to the reader). In terms of computable
quantities, this third condition can be written, after simplification,
as

!4 þ �8�2
n=2�1 � 18�2

n=2 þ 16	2
	 


!2 þ 9�4
n=2 � 0:

Again we use the quadratic formula to find that

!2 �4�2
n=2�1 þ 9�2

n=2 � 8	 2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2

n=2�1
þ 9�2

n=2 � 8	 2

	 
2
�9�4

n=2

r
;

or

!2 �4�2
n=2�1 þ 9�2

n=2 � 8	 2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2

n=2�1
þ 9�2

n=2 � 8	 2

	 
2
�9�4

n=2

r
:

It is the greater-than constraint that is relevant, and so we take
the positive root. Finally, we recall that

!2 ¼ GM

r 3
þ Gm

r 3
In; �2

n=2 ¼
Gm

2r 3
Jn � J̃n=2;n
� �

;

	 2 ¼ Gm

2r 3
In;

and so the inequality on !2 reduces to

M

m
�2 Jn � J̃n=2�1;n

� �
þ 9

2
Jn � J̃n=2;n
� �

� 5In

þ
(

2 Jn � J̃n=2�1;n

� �
þ 9

2
Jn � J̃n=2;n
� �

� 4In

� �2

� 9

4
Jn � J̃n=2;n
� �2)1=2

: ð43Þ

The third column in Table 1 shows thresholds computed using
this inequality. It is clear that for even values of n greater than 7,
this threshold matches the numerically derived threshold shown
in the second column in the table. This suggests that inequalities
analogous to equation (43) derived for j 6¼ n/2 are less restrictive
than equation (43). The proof of this statement is obviouslymore
complicated than the j ¼ n/2 case because the general case in-
cludes a linear term (Bj 6¼ 0) that vanishes in the j ¼ n/2 case.
The linear term makes it impossible simply to use the quadratic
formula, and therefore, any analysis involves a more general anal-
ysis of a quartic equation. Scheeres & Vinh (1991) analyzed the
general case. Although their notations are different, the funda-
mental quantities are the same, and so their analysis is valid here
as well. Rather than repeating their complete analysis, we simply
outline the basic steps in x 7.1.2.

7.1.2. The Subcase in Which j 6¼ n/2

Let � j�1 denote the average of � jþ1 and � j�1:

� j�1 ¼ (� jþ1 þ � j�1)=2:

If we were to assume for the moment, incorrectly, that terms in-
volving the difference � jþ1 � � j�1 were not present in equa-
tions (36)–(38), then an analysis analogous to that given in x 7.1.1
would give us the inequality

!2 � 4�2
j�1 þ 9�2

j � 8	 2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2

j�1 þ 9�2
j � 8	 2

	 
2
�9�4

j

r
:

Next one uses the fact that �2
j�1 is unimodal as a function of

j, taking its maximum value at j ¼ n/2. Hence, the inequality
associated with j ¼ n/2 is the strictest of these inequalities. Fi-
nally, the difference terms are treated as small perturbations to
this simple case, and a homotopy analysis shows that the j ¼ n/2
case remains the strictest case even as the difference terms are
fed in.
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7.1.3. Large n

When n is large, J̃n=2�1;n � J̃n=2;n and Jn 3 In. Furthermore,

J̃n=2;n �
1

2

Xn=2
k¼1

(� 1)k

sin3(k�=n)
� n3

2�3

X1
k¼1

(� 1)k

k3

¼ � 3

4

n3

2�3

X1
k¼1

1

k3
� � 3

4

1

2

Xn=2
k¼1

1

sin3(k�=n)
� � 3

4
Jn:

Hence, equation (43) reduces to

M

m
� 7

8
13þ 4

ffiffiffiffiffi
10

p	 

Jn;

or, equivalently,

m � M

7=8ð Þ 13þ 4
ffiffiffiffiffi
10

p� �
Jn

� 2:299M

n3
; ð44Þ

which is precisely the answer Maxwell obtained 150 years ago.
Of course, we have assumed here that n is even. For the odd
case, as n ! 1, j� j�1 � � jþ1j ! 0, so that the odd quartic
equation for j ¼ (n� 1)/2 reduces to the even equation for
j ¼ n/2, giving the same stability criteria as the even-particle
case. This can be seen in our simulations as well. The cases of
n ¼ 100 and 101 give the same threshold to several significant
figures.

7.2. The Case in Which j ¼ 1 or j ¼ n� 1

By symmetry, these two cases are the same. Hence, we con-
sider only j ¼ 1. Again after some manipulation in which we
exploit the fact that �2

0 ¼ 0, we arrive at

det Dþ
Xn�1

k¼1

� kNk þ k�� k2I

 !
¼ k4 þ Ajk

2 þ iBjkþ Cj ¼ 0;

ð45Þ

where

A1 ¼ !2 � 1

2
n� þ �2

2

� �
þ 2	 2; ð46Þ

B1 ¼ �! n� � �2
2

� �
; ð47Þ

C1¼ 3!2 1

4
�2

2þ
3

2
�2

1 � 	 2 � 1

2
n�

� �
þ 1

4
(n� þ �2

2)� 	 2

� �2

� 1

16
n� � �2

2

� �2� 9

4
�2

1 �2
1 � n�

� �
; ð48Þ

� ¼ Gm

r 3
: ð49Þ

Note that the coefficient B1 is imaginary, whereas the other
three coefficients are real. This suggests making the substitution

 ¼ ik. In terms of 
, equation (45) becomes a quartic equation
with all real coefficients:


4 � A1

2 þ B1
þ C1 ¼ 0: ð50Þ

This equation has at most four real roots. If it does have four real
roots, then the corresponding values for k are purely imaginary
and the system could be stable. If, on the other hand, there are
two or fewer real roots, then at least one pair of roots to equa-

tion (50) form a conjugate pair, and therefore, the correspond-
ing pair of values for k are such that one has a positive real part
and the other a negative real part. Hence, in that case the system
is demonstrably unstable. Simple numerical investigation reveals
that this is precisely what happens when 2 � n � 6 regardless of
the mass ratio M /m.
To see why, let us consider just the case in whichM /m is very

large, and hence the ratio

r ¼ m=M

is very close to 0. In this asymptotic regime,

A1 ¼ aM ; B1 ¼ b
ffiffiffiffiffi
M

p
m; C1 ¼ cMm;

where a > 0 and the sign of c is the same as the sign of (1/4)�2
2þ

(3/2)�2
1 � 	 2 � (1/2)n�. Substituting rM for m and making the

change of variables defined by � ¼ 
/
ffiffiffiffiffi
M

p
, we get

�4 � a� 2 þ br� þ cr ¼ 0:

For r ¼ 0 this equation reduces to � 4 � a� 2 ¼ 0, which has
three real roots: a positive one, a negative one, and a root of mul-
tiplicity 2 at � ¼ 0. By continuity, for r small but nonzero the
quartic still has a positive root and a negative root, but the double
root at � ¼ 0 can either disappear or split into a pair of real
roots. Since this bifurcation takes place in the neighborhood of
the origin, the quartic term can be ignored, and the equation in
the neighborhood of zero reduces to a quadratic equation:

�a� 2 þ br� þ cr ¼ 0:

This equation has two real roots if and only if its discriminant
is nonnegative:

r rb2 þ 4ac
� �

� 0:

Hence, if c is negative there will not be a full set of real roots for
r very small, and hence, the ring system will be unstable in that
case. In other words, the system will be unstable if

1

4
�2

2 þ
3

2
�2

1 � 	 2 � 1

2
n� < 0:

This equation reduces to

Xn�1

k¼1

1

sin �k=nð Þ � n� 1

2
cot

�

2n

	 

< 0: ð51Þ

It is easy to check that the expression is negative for n ¼ 2, : : : ,
6 and positive for n � 7. Therefore, we have proved that ring
systems are unstable for n ¼ 2, : : : , 6, at least when m is very
small relative to M. We have not proved the result for larger
values of m, but it seems that such a case should be even more
unstable, which is certainly verified by our simulator.

8. COMPARISON WITH PRIOR RESULTS

Of the prior work summarized in x 1, the work of Roberts
(2000) is the most recent, most rigorous, and most self-contained.
In this section we compare our results with his. Like us, Roberts
shows that the ring configuration is linearly unstable when n � 6.
Furthermore, for n � 7 Roberts shows that the ring is linearly
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stable if and only ifM > hnm, where hn is a bifurcation value in
a certain quartic polynomial. For n even, the formula he derives
for hn is

hn ¼ Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B

p
;

where

A ¼ 2�þ 8P þ 18Q; B ¼ 36Q2 � 8�P;

and

� ¼ 1

2

Xn�1

k¼1

1

sin �k=2
¼ 2In;

P ¼
Xn�1

k¼1

1� (� 1)k cos �k

16 sin3�k=2
¼ 1

4
Jn � J̃n=2�1;n

� �
;

Q ¼
Xn�1

k¼1

cos �k � (� 1)k

16 sin3�k=2
¼ 1

4
Jn � 2In � J̃n=2;n
� �

:

In the above expressions we have used formulae (22), (23), (24),
(27), and (28) to establish the alternate form of these expres-
sions. From these alternate forms it is easy to see that the right-
hand side in equation (43) is precisely hn.

Furthermore, the fact that the asymptotic expression given by
Roberts matches ours is easy to verify directly. Roberts wrote
the asymptotic expression as

hn �
13þ 4

ffiffiffiffiffi
10

p

2�3

X1
1

1

(2k � 1)2
:

To verify the agreement, it suffices to note that

X1
k¼1

1

k3
¼
X1
k¼1

1

(2k)3
þ
X1
k¼1

1

(2k � 1)3
¼ 1

8

X1
k¼1

1

k3
þ
X1
k¼1

1

(2k � 1)3
;

and therefore,

X1
k¼1

1

(2k � 1)3
¼ 7

8

X1
k¼1

1

k3
:

With this identity, it is easy to see that his expression matches
ours given in equation (44).

9. RING DENSITY

Suppose that the linear density of the boulders is k. That is, k is
the ratio of the diameter of one boulder to the separation between
the centers of two adjacent boulders. Then the diameter of a
single boulder is k(2�r /n). Hence, the volume of a single boulder
is (4�/3)(k�r /n)3. Let � denote the density of a boulder. Then the
mass of a single boulder is (4�/3)(k�r /n)3�. If we assume that the
density of Earth is about 8 times that of a boulder (Earth’s density
is 5.5 and Saturn’s moons have a density of about 0.7, being com-
posed of porous water ice), then we have

� ¼ 1

8

mE

(4�=3)r 3E
;

where mE denotes the mass of Earth and rE denotes its radius.
Combining all of these factors and assuming the central mass is

equal to Saturn’s mass and the ring’s radius is about the radius
of the Cassini division (120,000 km), we see that the upper bound
on the linear density of boulders is

k � 8
M=mE

25:65 ; 0:01938

� �1=3
rE

r
¼ 0:219:

In other words, the linear density cannot exceed 22%; otherwise,
the ring will be unstable. Of course, this is for a one-dimensional
circular ring of ice boulders. Analysis of a two-dimensional
annulus or the full three-dimensional case is naturally more com-
plicated. Nonetheless, the 22% linear density figure matches
surprisingly well with the measured optical density, which hovers
around 0.05–2.5.

10. NUMERICAL RESULTS

We have computed stability thresholds three different ways for
various finite n. First we numerically solved for all eigenvalues
of the 4x ; 4n matrix in equation (25) and did a binary search to
locate the smallest mass ratio M /m for which no eigenvalue has
a positive real part. We then translated this threshold into a value
of �, expressed as

m � �M=n3;

and tabulated those results in the ‘‘Numerical’’ column in Table 1.
Second, for even values of n we used equation (43) to derive

� threshold values. These values are reported in the third column
in Table 1. Note that for even values of n larger than 7, these
results agree with those obtained numerically.

Finally, and perhaps most interestingly, the fourth column in
the table are stability thresholds that were estimated using a sim-
ulator based on a leapfrog integrator (Saha & Tremaine 1994; Hut
et al. 1995). In this column two values are given. For the larger
value, instability has been decisively observed. However, verify-
ing stability is more challenging since one should in principle run
the simulator forever. Rather than waiting that long, we use the
rule of thumb that if the system appears intact for a period of time
10 times greater than the time it took to demonstrate instability,
thenwe deem the system stable at that mass. This is how the lower
bounds in the table were obtained. It is our belief that a symplectic
simulator provides themost convincingmethod of discriminating
between stable and unstable orbits, at least when the number of
bodies remains relatively small, for instance, up to a few hun-
dred. Unstable orbits reveal themselves quickly, as the initial
inaccuracy of double-precision arithmetic quickly cascades into
something dramatic if the system is unstable. If, on the other
hand, the system is stable, then the initial imprecisions simply
result in an orbit that is close to but not identical to the intended
orbit. The situation does not decay. Any reader who has never
experimented with a good symplectic integrator is strongly en-
couraged to experiment with the Java applet posted online,1 as
hands-on experience can be very convincing.

Of course, the amazing thing about the simulator results is
that they match the numerical results in the second column. The
thresholds determined by linear stability analysis only tell us
definitively that for m larger than the threshold, the system is
necessarily unstable. But for m smaller than the threshold, the
mathematical /numerical analysis says nothing, since in those

1 See http://www.princeton.edu /	rvdb/JAVA/astro/galaxy/StableRings.html.
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cases the eigenvalues are all purely imaginary. Yet simulation
confirms that the thresholds we have derived are truly necessary
and sufficient conditions for stability.

As shown in x 7.2 for 2 � n � 6, the system is unstable. The
simulator verifies this. In these cases there is lots of room to roam
before one body catches up to another. Even the tiniest masses

are unstable. The case n ¼ 2 is especially interesting. For this
case the two small bodies are at opposite sides of a common
orbit. Essentially they are in the L3 position with respect to each
other. For the restricted three-body problem (in which one body
has zeromass) it is well known that L3 is unstable nomatter what
the mass ratio. Our results bear this out.
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